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In this paper we study analytically a simple one-dimensional model of mass
transport. We introduce a parameter p that interpolates between continuous-
time dynamics ( p � 0 limit) and discrete parallel update dynamics ( p=1). For
each p, we study the model with (i) both continuous and discrete masses and
(ii) both symmetric and asymmetric transport of masses. In the asymmetric
continuous mass model, the two limits p=1 and p � 0 reduce respectively to
the q-model of force fluctuations in bead packs [S. N. Coppersmith et al., Phys.
Rev. E 53:4673 (1996)] and the recently studied asymmetric random average
process [J. Krug and J. Garcia, cond-mat�9909034]. We calculate the steady-state
mass distribution function P(m) assuming product measure and show that it has
an algebraic tail for small m, P(m)tm&;, where the exponent ; depends con-
tinuously on p. For the asymmetric case we find ;( p)=(1& p)�(2& p) for 0�
p<1 and ;(1)=&1, and for the symmetric case, ;( p)=(2& p)2�(8&5p+ p2)
for all 0�p�1. We discuss the conditions under which the product measure
ansatz is exact. We also calculate exactly the steady-state mass�mass correlation
function and show that while it decouples in the asymmetric model, in the sym-
metric case it has a nontrivial spatial oscillation with an amplitude decaying
exponentially with distance.

KEY WORDS: Interacting particle systems; mass transport; parallel and
random sequential dynamics.

I. INTRODUCTION

There is a wide variety of physical systems in nature where the basic
microscopic dynamical processes involved are aggregation, fragmentation,
adsorption, desorption and transport of mass. These processes are abundant
and occur in systems such as colloidal suspensions, (1) polymer gels, (2, 3)
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river networks, (4) aerosols and clouds(5) and surface growth phenomena
involving island formation.(6) These systems can have different types of
non-equilibrium stationary states and phase transitions between them as
the rates of the underlying microscopic processes are varied. While for
systems in thermal equilibrium the stationary state is characterized by the
Gibbs measure, there is no such general recipe for non-equilibrium systems.
In order to gain more insights on the nature of these steady states and
possible phase transitions between them, several simple lattice models
involving mass transport have been proposed and studied recently.(7�9) By
virtue of their simplicity, these lattice models are often amenable to exact
analysis and yet contain rich and nontrivial physics.

These models constitute simple examples of interacting many particle
systems out of equilibrium; in particular the dynamics of these systems do
not obey detailed balance. The steady states of interacting manly body
systems are in general difficult to characterize and only a few exact results
are available. These include simple exclusion processes with open and
closed boundary conditions, (10) abelian sandpile models of self organized
criticality, (11) traffic models (12) and mass aggregation model of Takayasu.(7)

Moreover the steady states in some cases are non universal and depend on
the detailed nature of the dynamics used for updating. For example the
steady state in the asymmetric simple exclusion process depends on
whether the update rules are parallel or random sequential.(13) It is there-
fore desirable to study more of such simple models in a systematic way in
order to get insight into the nature of the non-equilibrium steady states. In
this paper we study a simple lattice model of mass transport analytically
which sheds some light on these general issues pertaining to interacting
many body systems.

Besides, the dynamics in seemingly unrelated systems can often be
mapped onto simple one dimensional mass transport models evolving with
time according to some prescribed rules. These systems include river net-
works, (7, 14) force fluctuations in granular systems such as bead packs, (15)

traffic flows, (16) voting systems, (17, 18) wealth distributions, (19) generalized
Hammersley process(20) and inelastic collisions in granular gases.(21)

In this paper we study analytically a model of mass transport in a one
dimensional lattice. Each lattice-site contains a nonnegative mass variable
and the dynamics consists of transporting a finite amount of mass from
each site to its neighbours. The amount to be transported is randomly
chosen from a given distribution. We introduce a parameter p that inter-
polates between continuous time dynamics ( p � 0 limit) and discrete
parallel update dynamics ( p=1). For each p, we study the model with
(i) both continuous and discrete masses and (ii) both symmetric and asym-
metric transport of masses.
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The paper is organized as follows. In Section II, we define the mass
model precisely and discuss its mapping to other models of non equi-
librium statistical mechanics. We also summarize our main results. In
Section III, we discuss the asymmetric continuous mass model and solve
for the mass distribution function in the steady state assuming that product
measure holds. We then discuss under what conditions the product
measure is exact. The two point mass correlation function is also computed
exactly. In Section IV, we study the symmetric version of the continuous
mass model. We show that product measure becomes exact in a particular
limit. We also compute the stationary two point mass correlation function
exactly for the symmetric model. In Section V, we study the discrete mass
version of the model. Finally we conclude with a summary and outlook in
Section VI. Appendix A contains a proof that product measure fails for the
asymmetric model for any p<1. In Appendix B we prove that product
measure is exact for the symmetric model in the p � 0 limit.

II. THE MODEL

Our mass model is defined on a lattice. For simplicity, we define it
here on a one dimensional lattice with periodic boundary conditions. The
generalization to higher dimensions is straightforward. Each lattice site
contains a nonnegative mass variable. We consider two versions of the
model: (i) when the mass at each site is a continuous variable and (ii) when
the mass at each site is discrete.

First consider the continuous mass model (Fig. 1). We start with a
random configuration of masses, m(i) at each site i. The dynamics is

Fig. 1. Asymmetric continuous mass model: A random fraction ri of each mass mi is broken
off and added to the right neighbour with probability p. With probability (1& p), the broken
piece rejoins the original mass.
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defined as follows. Each discrete time step consists of two moves: (1) a frac-
tion 'i of each mass mi is chosen and then (2) with probability p, this frac-
tion is added to a neighbouring site and with probability (1& p) it remains
at the original site. In the asymmetric model, the fraction is always added
to the right neighbour. In the symmetric case, the fraction goes either to
the left or the right neighbour with equal probability. We note that total
mass is conserved by the dynamics. Thus the model has two parameters,
the probability p and the average mass per site \.

The fractions 'i are independent and identically distributed random
variables drawn from a probability distribution on [0, 1]. In this paper, we
will mostly consider a uniform distribution of 'i on [0, 1] though some of
our results can be generalized to a class of other distributions.

We note that for p=1, all the chosen fractions of masses are definitely
transported to their neighbours. This corresponds to fully parallel update
dynamics. In this case, the asymmetric version of the model reduces exactly
to the q-model introduced by Coppersmith et al.(15) to study force fluctua-
tions in random bead packs. In this case, the mass at each site evolves as

mi (t+1)='i&1mi&1(t)+(1&' i ) mi (t) (1)

In the context of bead packs, the indices i and t index the site i at a depth
t in a two dimensional packing. Then for large t, mi represents the force
supported by a bead at (i, t) scaled by the mean weight and 'i mi is the ran-
dom component of the weight (scaled by the mean weight) transmitted
from a bead at depth t to a neighbouring one at depth (t+1) that touches
it. The same equation was also studied in ref. 9 in the context of a lattice
gas model. The stationary mass distribution P(m) of the q-model was
solved exactly(15) and remarkably the mean field theory turned out to be
exact in the thermodynamic limit for the case of uniform distribution of the
fractions 'i 's. This means that the steady state joint distribution of masses
at different sites factorises, P(m1 , m2 , m3 ,...)=>i P(m i ). In other words,
the product measure is exact in this case and P(m) was shown(15, 9) to have
a simple distribution,

P(m)=
4m
\2 e&2m�\ (2)

In the opposite limit p � 0, the probability that two or more sites will
be simultaneously updated in a single move is O( p2) and hence negligible.
With the choice of p=2t, this limit thus corresponds to the random
sequential continuous time dynamics. This case has been studied recently
by Krug and Garcia(16) and assuming that product measure holds they
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derived the steady state mass distribution P(m) for uniform distribution
of 'i 's,

P(m)=
1

- 2?\m
exp(&m�2\) (3)

The difference in the small m behaviour of the mean field P(m) in the
parallel and random sequential case was correctly noted by Krug and
Garcia.(16) We have studied both the symmetric and asymmetric versions of
the model for arbitrary p. Our main results are summarized as follows:

(1) In the asymmetric case, we show that within the mean field
approximation P(m)tm&; for small m, while it decays exponentially for
large m. The exponent ;( p) depends continuously on p with a discontinuity
at p=1, ;( p)=(1& p)�(2& p) for p<1 and ;(1)=&1. In the symmetric
case, the mean field P(m) has a similar behaviour except the exponent
;( p)=(2& p)2�(8&5p+ p2) for all p in [0, 1]. Note that in the symmetric
case, there is no discontinuity at p=1.

(2) In the asymmetric case, we prove rigorously that the product
measure is exact only for p=1. For any p<1 (including the random
sequential p=0 case), we show that the product measure ansatz,
P(m1 , m2 , m3 ,...)=>i P(mi ) breaks down. But remarkably the mean field
P(m) is almost indistinguishable from the P(m) obtained from numerical
simulation in one dimension. We note that the breakdown of product
measure property does not necessarily mean that the correct single point
distribution P(m) is still not given by the mean field P(m); in fact numeri-
cal results strongly suggest that the mean field P(m) is exact even though
product measure fails. In the symmetric case on the other hand, product
measure is exact only for p � 0 but fails for any p>0. Besides, as opposed
to the asymmetric case, the mean field P(m) is considerably different from
the distribution obtained numerically. This is due to strong correlations
between masses in the symmetric case as mentioned below.

(3) The two-point mass correlation function C(r)=(m(0) m(r))
between two sites at distance r can be computed exactly (without recourse
to the assumption of product measure) for arbitrary p in both asymmetric
arid symmetric models. We find that in the asymmetric case, for all values
of p, the connected part of the correlation function vanishes, C(r)&\2=0
for r>0. In the limit p � 0, this fact was noted by Krug and Garcia.(16)

This however does not imply the validity of product measure is exact which
would require factorization of all higher order correlations as well. For the
symmetric case, the correlation function factorises only for p=0. However
for p>0, the function C(r)&\2 has a nontrivial spatial dependence. It
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oscillates with distance r and the amplitude of the oscillation decays
exponentially with r.

We have also studied a discrete mass version of the above model. In
this case the mass mi at any site i can take only discrete non-negative
integer values. Instead of a random fraction breaking off a mass as in the
continuous case, the mass to be taken out of a site is a random variable
that takes only discrete values 0, 1, 2, 3,..., mi equally likely, i.e., any of
these values is chosen with the same probability 1�(mi+1). Then as before,
with probability p, the chosen mass is actually transported to a neighbour-
ing site and with probability (1& p) it stays at its original site. We derive
the explicit expressions for the mass distribution for the discrete case also.

This model can be mapped onto a model of hard core particles moving
with long range jumps in one dimension.(9, 16) First consider the continuous
mass model. Each site of the lattice corresponds to a particle (point) on the
real line and the mass mi represents the continuous gap between i th and
(i+1)th particle. The transport of random fraction of mi from the i th site
to (i+1)th site corresponds to the (i+1)th particle jumping to the left by
a random fraction of the available gap between it and its left neighbour
(see Fig. 2). The discrete mass problem similarly corresponds to particles
moving on a one dimensional lattice (as opposed to the real line in the
continuous case) with hard core repulsion. At each time step a particle
moves to a site randomly chosen from the set of empty sites in front of it.
This is a generalization of the simple exclusion process where a particle can
jump only to a nearest neighbour site provided it is unoccupied. In this
generalized case, while the hard core repulsion is respected, long range
jumps are allowed.

The discrete mass problem can also be mapped onto an interface
growth problem via the usual mapping from a lattice gas model to a growing
interface. Starting from a reference height h=0, a particle at site i corre-
sponds to h(i+1)=h(i)&1 while a hole corresponds to h(i+1)=h(i)+1.
Under this mapping, our problem corresponds to the following rules: Any
stretch of the interface with slope equal to 1 can be split at any randomly
chosen point in between into two sections of slope 1 connected by a bond
of slope &1.

Fig. 2. Mapping of the mass model to a particle model is shown. Each transfer of mass to
the right corresponds to the particle (filled circles) jumping to the left.
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III. THE ASYMMETRIC MODEL WITH CONTINUOUS MASS

In this section, we study the continuous mass model where in each
time step a fraction of the mass from any given site is transported with
probability p to its right neighbour. The Langevin equation for the mass
update can be written as

mi (t+1)=mi (t)&_i'i mi (t)+_ i&1' i&1mi&1(t) (4)

where the fractions 'i 's are random numbers in [0, 1] chosen from a
uniform distribution and the random variables _i 's take values 1 with
probability p or 0 with probability q=1& p. The distribution of both of
these variables are independent from site to site. Defining ri='i _i , we get

mi (t+1)=mi (t)(1&ri )+mi&1(t) ri&1 (5)

and it is not difficult to see that the effective distribution f (ri ) of the
random variable ri on [0, 1] given by

f (ri )=q$(ri )+ p (6)

The evolution equation of the single point mass distribution function
P(mi , t) (which is independent of i due to translational invariance) can be
written down exactly,

P(mi , t+1)=|
�

0
dm i&1 |

1

0
dri&1 f (ri&1) |

�

0
dm$i |

1

0
dri f (ri ) P(mi&1 , m$i , t)

_$(m$i (1&ri )+m i&1ri&1&m i ) (7)

Here P(mi&1 , mi , t) is the joint probability distribution of mass m i&1 at
site i&1 and mi at site i. The time evolution of the single point probability
distribution involves the two point joint probability distribution function.
Similarly the n-point probability distribution will involve the (n+1)-point
joint probability distribution and in general this hierarchy cannot be broken.

A. Mean Field Theory

We first compute the single point mass distribution P(m) from Eq. (7)
by assuming that the joint distribution factorises in the steady state,
P(mi&1 , mi )=P(mi&1) P(mi ). This approximation clearly ignores correla-
tions between masses. Within this approximation, Eq. (7) involves only
single point distribution function P(m). Taking the stationary limit, t � �,
and using the explicit form of the distribution f (r) from Eq. (6), we find
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that the Laplace transform, Q(s)=��
0 P(m) exp(&ms) dm satisfies the

equation,

Q(s)=
pV( pV+q)
1& pqV&q2 (8)

where V(s)=�1
0 Q(sr) dr. We note that (d�ds)(sV )=Q(s). Eliminating Q,

we get a first order differential equation for V which can be integrated to
give,

1&V
V 2& p=\s�2 (9)

where the integration constant has been determined by using the fact that
dQ�ds | s=0=&\ with \ being the average mass per site. The above equa-
tion reduces to a quadratic, cubic and linear equation in V for p=0,
p=0.5 and p=1 respectively.

For the fully parallel dynamics p=1, we get V(s)=2�(2+\s) and
hence Q(s)=4�(2+\s)2. By inverting the Laplace transform, we recover
the result P(m)=(4m�\2) e&2m�\ obtained by Coppersmith et al.(15) In the
random sequential limit, p � 0, we get

V(s)=
&1+- 1+2\s

\s
, Q(s)=

1

- 1+2\s
(10)

P(m)=
1

- 2?\m
exp(&m�(2\))

The same result was obtained by Krug and Garcia(16) by a somewhat
indirect method by computing the moments and then guessing the distribu-
tion from its moments. When p=0.5, the expression for P(m) is complicated
and we do not reproduce it here.

For arbitrary p, a closed form expression of P(m) is difficult to obtain.
However the asymptotic behaviour of P(m) for large and small m can be
easily derived. For large m, we expect P(m)te&:m. The decay coefficient
: can be derived by noting that the Laplace transform Q(s) must have a
pole at s=&:. From Eq. (8), we note that the pole of Q occurs when
V=(1&q2)�pq. Using this in Eq. (9), we get,

:=
2(1& p)1& p

\(2& p)2& p (11)

In the limits, p=1 and p � 0, this gives the correct decay coefficient of
P(m).
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For small m, on the other hand, P(m) has an algebraic tail, P(m)tm&;.
From Eq. (9), we note that for large s, V(s)r(2�\s)1�(2& p). Using Q(s)=
d(sV )�ds, we get for large s,

Q(s)r
1& p
2& p \

2
\s+

1�(2& p)

(12)

This implies that for p<1, P(m)tm&; for small m with ;=(1& p)�(2& p).
Note that for p=1, the coefficient of 1�s vanishes in Eq. (12) and the
leading order term decays as 1�s2, implying ;=&1 for p=1. Thus there is
a discontinuity in the exponent ;( p) at p=1.

How good is the product measure ansatz? In general, we have noted
before that the equation of the n-point distribution function contains the
(n+1)-point distribution function. If the product measure ansatz were to
be exact, then one has to ensure that every equation of the hierarchy is
satisfied by the product measure ansatz. This was in fact proved to be case
for p=1.(15) It is easy to show that this ansatz is exact only for p=1 and
fails for all p<1. This is proved by showing, that for p<1, the second
equation of the hierarchy (involving the two-point and three-point distribu-
tions) is not satisfied by the P(m) obtained from the first equation of the
hierarchy, i.e., Eq. (7) assuming product measure. Algebraic details are
given in Appendix A.

For p<1, we compared the mean field answer for P(m) with the
numerically obtained distribution in one dimension. In the limit p � 0, the
mean field P(m) matches extremely well with the numerically computed
one. This was also noted by Krug and Garcia.(16) For arbitrary p, we do
not have a closed form expression of mean field P(m) to compare with the
simulation results. However, various moments of m with the mean field P(m)
can be computed exactly for arbitrary p and compared to the numerically
obtained moments. The mean field moments are computed by expanding
V(s) in powers of s. We list the the moments (mn) for n=1,..., 5 below.

(m)=\

(m2)=
3(2& p)

2
\2

(m3)=
3(2& p)(5&3p)

2
\3 (13)

(m4)=
5(2& p)(21&26p+8p2)

2
\4

(m5)=
15(2& p)(504&955p+600p2&125p3)

16
\5
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Table I. Numerically Obtained Moments of the Mass Compared with the
Mean Field Values [Eq. (13)] for p=0.8 in the Asymmetric Continuous Modela

Moments Numerical Mean Field

(m2) 1.7998(0) 1.80
(m3) 4.6826(0) 4.68
(m4) 15.9888(3) 15.96
(m5) 67.72(1) 67.50

a The excellent agreement with the mean field results in this case is to be contrasted with
rather poor agreement with mean field results in case of symmetric continuous model (see
Table II).

To check how accurate these mean field moments are, we have computed
these moments directly from numerical simulation of the model for dif-
ferent values of p. In Table I, we compare the mean field moments (up to
order 5) to the numerical ones for a representative value of p=0.8. The
closeness of these moments to the numerical values for arbitrary p suggests
strongly that the mean field P(m) may be exact for all p even though the
product measure fails for p<1.

B. Correlation Function

In this subsection we compute the two point mass correlation function
exactly for the asymmetric continuous mass models In the continuous time
case ( p � 0 limit of our model), this was computed exactly by Krug and
Garcia(16) for arbitrary probability distributions of the random fraction r.
We reproduce their calculation here for completeness. Multiplying mi (t+1)
by mj (t+1) in Eq. (5) and taking expectation value in the steady state, we
find that two point correlations Cj=(mimi+ j) satisfy the following set of
linear equations,

C0(+1&+2)&C1+1(1&+1)=0

C0(+1&+2)&2C1 +1(1&+1)+C2+1(1&+1)=0 (14)

Cj&1&2Cj+Cj+1=0, j=2, 3, 4,...

with the boundary conditions Cj � \2 as j � �. Here +1=(ri) and
+2=(r i

2) are the first and second moments of the random fraction ri
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distributed according to Eq. (6). These set of of equations can be solved
easily to give, (16)

C0=
+1(1&+1)

+1&+2

\2

(15)
Cj =\2, j=1, 2, 3,...

Thus the two point correlation function (mi mj) is equal to (mi)(mj) for
i{ j. In fact this conclusion holds for any arbitrary distribution of the
fractions ri . This however does not mean that the product measure is exact.
That would require that all higher order correlations must also factorize. In
fact, for the asymmetric model, it can be shown(22) that the 3-point correla-
tion function does not factorize except for p=1.

IV. THE SYMMETRIC MODEL

In this section, we study the continuous mass model where mass trans-
port has no bias in direction. Once again we have a continuous mass mi at
each site. In each time step, a fraction is chosen at random from a uniform
distribution on [0, 1] and this fractional mass is transported to the left or
right nearest neighbour with equal probability p�2. With probability
q=1& p, the fractional mass stays at the original site. In order to write
down the mass evolution equation, it is convenient to define a set of
variables si at each site i. The variable si can be either +1 or &1 with
equal probability 1�2. If si=1, it indicates that the fractional mass from site
i is transported to the right neighbour. On the other hand, si=&1
indicates transport to the left neighbour. Then the mass evolution equation
can be written down as in the asymmetric case,

mi (t+1)=(1&ri ) mi (t)+
1+si&1

2
ri&1m i&1(t)

+
1&si+1

2
ri+1m i+1 (16)

where the random variables ri have the same distribution f (ri )=q$(ri )+ p
as in the asymmetric case. The evolution of the single point mass distribu-
tion function P(m, t) can be written down as in the asymmetric case
(Eq. (7)). The only difference is that now the single point equation contains
three point distribution (as opposed to the two point function in the asym-
metric case) and the additional si variables.
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A. Mean Field Theory

Assuming product measure, this equation can be solved in the same
fashion as in the asymmetric case. It follows that the Laplace transform
Q(s) of P(m) in the stationary state satisfies,

Q(s)=
pV(q+ pV+1)2

4&q(q+ pV+1)2 (17)

where V(s)=��
0 Q(su) du as in the asymmetric case. Using Q(s)=d(sV )�ds,

we find the function V(s) is given by the solution of the following nonlinear
equation,

_1&
p(1&V )

4 &
p�(4& p)

V &(8&5p+ p2)�(4& p)(1&V )=
\s
2

(18)

In the limit p � 0 (random sequential limit), this equation can be
solved in closed form and we get,

P(m)=
1

- 2?\m
exp(&m�(2\)) (19)

which has the same expression as for the asymmetric p � 0 case. For other
values of p, while we are unable to get a closed form expression, the
asymptotic behaviour of P(m) for large and small m can be easily derived.
We find that for large m, P(m)texp(&:m) where the coefficient :( p) can
be determined in the same way as in the asymmetric case. It is given by a
long expression which we do not present here. For small m, P(m) has an
algebraic tail, P(m)tm&; where the exponent ;( p) can be determined by
examining the large s behaviour of Q(s). We find ;( p)=(2& p)2�(8&5p
+ p2) which decreases continuously from 1�2 ( p � 0) to 1�4 ( p=1).

For the symmetric case, we show in Appendix B that the product
measure is exact in the p � 0 limit. For p>0, the product measure fails and
unlike the asymmetric case, the mean field P(m) is considerably different
from the distribution obtained numerically. This failure of mean field
theory for p>0 shows up in the calculation of two point correlation func-
tion as done in the next subsection. However, while the mean field theory
fails for large m (as evident from expectation value of the moments of the
mass distribution shown in Table II), it matches very well with the numeri-
cal result for small m (see Fig. 3).
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Table II. Comparison of Numerically Obtained Moments of the Mass with the
Mean Field Values for p=0.8 in the Symmetric Continuous Modela

Moments Numerical Mean Field

(m2) 2.3237(4) 2.100
(m3) 8.623(5) 6.660
(m4) 44.37(7) 28.260
(m5) 293.2(9) 150.314

a This clearly shows that the mean field approximation is not good for the symmetric case as
compared to the asymmetric case.

B. Correlation Function

For the symmetric model, the translationally invariant stationary two
point mass correlation function, Cj&i=(mi mj) does not factorize for j{i
as in the asymmetric case. Below we compute the two point correlation
exactly and show that the connected part of the correlation function in fact
has a nontrivial spatial dependence.

Multiplying Eq. (16) by mj (t+1) and taking expectation value, we
find that in the stationary limit t � �, the correlation function Cj satisfies,

Fig. 3. The analytical mean field answer for ;( p) is compared with the numerical result for
the symmetric continuous mass model. While the numerical single site distribution for masses
is quite different from the mean field answer (see Table II), the small m behaviour is predicted
well by the mean field.
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+1Cj&2(1&$ j2)+4(1&+1) Cj&1+2(3+1&4) C j

+4(1&+1) Cj+1++1Cj+2=0, j=2, 3,...
(20)

4(1&w) C0+2(7+1�2&4) C1+4(1&+1) C2++1C3=0

4(&1+w) C0+4(1&+1) C1++1 C2=0

where +1=(ri) and +2=(r2
i ) are respectively the first and second

moments of f (ri ) and w=+2 �+1 .
Let G(z)=��

j=1 Cjz j be the generating function. Multiplying Eq. (20)
by z j and summing over j 's, we get

G(z)=
z[4(1&w) zC0+C1 +1(1+z)]

(1&z)[4z++1(1&z)2]
(21)

The boundary condition, Cj � \2 as j � � implies that G(z) � \2�(1&z)
as z � 1. This gives us one relation between C0 and C1 ,

C1=(2\2&2(1&w) C0)�+1 (22)

We need one more condition to fix both C0 and C1 . This is obtained by
noting that G(z) in Eq. (21) has three poles, z=1 and z=z\ where z\=
(+1&2\2 - 1&+1 )�+1 . We note that |z+ |<1 which would imply that Cj

will blow up exponentially as |z+ | j for large j. Since this can not happen,
the numerator on the right hand side of Eq. (21) must also vanish at z=z+

in order to cancel the pole. This provides an additional condition which
together with Eq. (22) gives,

C0=
\2(1+z+)

(1&w)(1&z+)
=

\2
- 1&+1

1&w
(23)

and C1 can be determined from Eq. (22). Inverting the generating function,
we find that for any n>0,

Cn=\2[1&zn
+] (24)

Since z+=(+1&2+2 - 1&+1 )�+1 lies in [&1, 0], clearly the connected
part of the correlation function has a nontrivial oscillation with distance
with an amplitude that decays exponentially with the distance.

Curiously the function Cn for n>0 depends only on +1 but not on +2 ,
whereas C0 involves both +1 and +2 . We also note that the above exact
result is valid for any arbitrary distribution f (r) of the fractions ri and not
just for the special distribution given by Eq. (6). For that distribution, we
get from Eq. (6), +1= p�2 and +2= p�3 and hence w=2�3. One useful
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check is that in the limit p � 0, we get z+ � 0 implying complete decoupling
of the two point correlation. This is consistent with the fact that product
measure is exact in the symmetric case only in the p � 0 limit. For p>0,
the correlation function has a nontrivial spatial dependence and product
measure clearly fails.

V. THE DISCRETE MASS MODEL

In this section we study the model when the mass mi at each site i is
a discrete non negative integer. In each time step, a block of size ni is
chosen at each site and is transported to its neighbour with probability p
and stays at the original site with probability q=1& p. The block size ni

is a discrete random variable which can take values 0, 1, 2,..., mi , all with
equal probability 1�(mi+1). As in the continuous mass model, the mass
transport can be either asymmetric or symmetric. We study here only the
asymmetric model but the symmetric version can be studied by using
similar procedures.

There is an equivalent lattice gas representation of this model in one
dimension as mentioned in Section II. In this mapping, lattice site i of the
mass model corresponds to the i th hard core particle and the mass mi

represents the number of holes or empty sides between the i th and (i+1)th
particle. In the lattice gas dynamics of the asymmetric model, at each time
step every particle jumps to any one of the available vacant sites in front
of it with equal probability.

The analysis of the stationary mass distribution of the asymmetric dis-
crete model proceeds along the same line as its continuous counterpart. We
write down the evolution equation of the single site distribution function
P(m, t) in terms of the joint two point distribution P(m1 , m2 , t). Assuming
product measure holds, the evolution equation is given by,

P(mi , t+1)=p2 :
�

mi&1=0

:
mi&1

m1=0

:
�

m$i=0

:
m$i

m2=0

P(mi&1) P(m$i )
(m i&1+1)(m$i+1)

_$(m$i&m2+m1&mi )

+ pq :
�

m$i=0

:
m$i

m2=0

P(m$i )
(m$i+1)

$(m$i&m2&m i )

+ pq :
�

mi&1=0

:
mi&1

m1=0

:
�

m$i=0

P(m i&1) P(m$i )
(m i&1+1)

$(m$i+m1&mi )

+q2 :
�

m$i=0

P(m$i ) $(m$i&m i ) (25)
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We define the generating function, Q(x)=��
0 P(m) xm. In the stationary

limit, we get from the above equation,

Q(x)=
[ f (x)& f (1)][ p( f (x)& f (1))+q(x&1)]
(x&1)[(1+q)(x&1)&q( f (x)& f (1))]

(26)

where f (x)=��
m=0 (P(m)�(m+1)) xm+1. Using Q(x)=df�dx, one can

obtain closed form expressions of Q(x) and hence of P(m) only in the two
limits, p=1 and p � 0. For the fully parallel dynamics ( p=1), we get,

Q(x)=
1

(1&\�2(x&1))2 (27)

P(m)=
4(m+1) \n

(\+2)n+2 (28)

For the random sequential case ( p � 0), we find

Q(x)=
1

- 1&2\(x&1)
(29)

P(m)=
(2\)m

(1+2\)n+1�2

(2n)!
(n!)2 22n (30)

It is easy to check that in the limit of large m and \, these distributions
reduce to their continuous counterparts (Eq. (2) and Eq. (3), respectively)
as expected.

As in the continuous asymmetric model, it turns out that the product
measure is exact only in the p=1 limit. The proof that the product
measure is exact for p=1 in the discrete case can be derived by following
the same line of arguments as used for the continuous case.(15) Basically,
one writes down the exact evolution equation for the n-point joint distribu-
tion which involves the (n+1)th point joint distribution. One makes the
ansatz for product measure and ensures that this ansatz is consistent for all
values of n, i.e., all the equations of the hierarchy satisfy the product
measure ansatz.

Without giving the details we just outline below few basic steps. For
p=1, assuming product measure in the equation involving single point and
two point distributions (Eq. 25), we obtain P(m) as given by Eq. (28).
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Consider first a cluster of n neighbouring sites 1, 2,..., n. The time develop-
ment for the n-point probability distribution can be written as

P(m1 ,..., mn , t+1)= :
�

m$0=0

:
m$0

r0=0

} } } :
�

m$n=0

:
m$n

rn=0

P(m$0 , m$1 ,..., m$n , t)
(m$0+1)(m$1+1) } } } (m$n+1)

_$(m$1&r1+r0&m1) } } } $(m$n&rn+rn&1&mn)

(31)

We have to now show that the product measure ansatz P(m1 , m2 ,...)=
>i P(mi ) in the steady state with P(m) given by Eq. (28) is consistent with
Eq. (31). To show this, we consider the n-variable generating function
Q(x1 ,..., xn)=��

m1=0 } } } ��
mn=0 P(m1 ,..., mn) xm1

1 } } } xmn
n . We assume product

measure on the right hand side of Eq. (32), sum over the mi 's and obtain,

Q(x1 ,..., xn)=
:& f (x1)

1&x1

f (x2)& f (x1)
x2&x1

} } }
f (xn)& f (xn&1)

xn&xn&1

:& f (xn)
1&xn

=Q(x1) Q(x2) } } } Q(xn) (32)

where in deriving the last step we have used Q(x)=df�dx and the expres-
sion of Q(x) from Eq. (26). One can repeat the same calculation when the

Fig. 4. The analytical mean field answer for the single site mass distribution function P(m)
given by Eq. (30) is compared to the numerical result for the asymmetric random sequential
discrete mass model. The date is for system size L=20000. The closeness of the two curves
suggest that mean field P(m) is exact even though the product measure fails.
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n sites are not necessarily neighbours. This therefore proves that every
equation of the hierarchy of distribution functions satisfies the product
measure ansatz for p=1. However, this proof fails for p<1 as in the
continuous case and the same line of argument used for the continuous
case (see Appendix A) goes through for the discrete case. Even though the
product measure fails, the mean field answer for other values of p match
very well with the numerically computed one. For the random sequential
case ( p � 0), we compare the mean field result for the single site probabil-
ity distribution with numerical simulation (see Fig. 4).

VI. SUMMARY AND CONCLUSION

In this paper we have studied a simple mass model of chipping and
aggregation where a mass at a site can chip off a fraction to its neighbour.
A parameter p was introduced which allowed us to interpolate between
parallel dynamics anti random sequential dynamics. We studied the model
for both continuous and discrete masses as well as for symmetric and
asymmetric transport of mass.

We have calculated analytically the mass distribution function P(m) in
the steady state for all p assuming product measure, i.e., neglecting correla-
tion between masses. In some cases we proved that this product measure
is exact. One of the main results is that the distribution P(m) has an
algebraic tail for small m, P(m)tm&;( p) where the exponent ;( p) depends
on p. Thus the steady state is non universal and depends on the specific
nature of the dynamics characterized by the parameter p.

Another interesting point is that for the asymmetric, continuous mass
model, we show that even though the two-point mass correlation function
decouples for any p, product measure is not valid for p<1. This means
that the correlations between masses at different sites show up only in 3 or
higher order correlation functions but not at the 2 point level. Exact
calculation of the 3-point correlation function will be presented else-
where.(22) Interestingly however the single point mass distribution P(m)
obtained using product measure ansatz is extremely close to the numeri-
cally obtained distribution.

Interpreting mi as the distance between two hard core particles
labelled i and (i+1), it is easy to see that within product measure ansatz,
the steady state probability of a given configuration can be written as,
P(m1 , m2 ,...)t>i m&;( p)

i for small gaps between neighbouring particles.
This represents a gas of particles moving on a ring with nearest neighbour
interaction ;( p) log(r) for small r, where r is the separation between neigh-
bouring particles. Choosing different dynamics via tuning p corresponds
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Fig. 5. The correlation function C(x)=(m0 mx)&(m)2 given by Eq. (24) is shown for
+1=0.96. It oscillates with distance with the amplitude decaying exponentially to zero.

to changing the coupling continuously. For the asymmetric model, ;( p)=
(1& p)�(2& p) for p<1 and &1 for p=1. This corresponds to a shift from
a potential that prefers ``bunching'' of particles for p<1 to a repulsive one
at p=1. This jump discontinuity is lost for the symmetric model where we
have ;( p)=(2& p)2�(8&5p+ p2)>0 for all p.

We also calculated exactly the correlation function Cj=(m0 mj) for
the asymmetric and the symmetric models. When the transport is asym-
metric the correlation function factorises for j{0. Unlike the asymmetric
case, theme are nontrivial correlations in the symmetric model. The con-
nected part of the correlation function oscillates with distance and the
amplitude of the, oscillation decays exponentially with distance (Fig. 5).

A simple lattice mass model with diffusion, aggregation and chipping
of single units of mass was shown to exhibit nonequilibrium phase transi-
tion in the steady state.(8, 9, 3) In this paper we have shown that if a random
fraction chips off instead of a single unit, the steady state no longer has a
phase transition as the rates of microscopic processes are varied.

There are several directions for future work. For the asymmetric con-
tinuous mass model with continuous dynamics ( p � 0 limit of our model),
Krug and Garcia(16) had derived density�density correlations between par-
ticles in the lattice gas representation. It would be interesting to extend
their calculation to general p. Another interesting direction would be to
derive the large scale hydrodynamics for general p and extend the calcula-
tion of the tracer diffusion coefficient(16, 23) to general p.
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APPENDIX A. NON EXACTNESS OF PRODUCT MEASURE
ANSATZ FOR ASYMMETRIC CONTINUOUS
MODEL FOR p<1

In this appendix, we show that the product measure or the mean field
theory is not exact for asymmetric continuous mass model for p{1. The
steps in the proof are as follows. In general the evolution equation of the
n-point joint distribution function will involve the (n+1)-point distribu-
tion. If the product measure were to be exact, then every equation of this
hierarchy has to be consistent with that ansatz. We show below that for the
asymmetric case, the second equation of the hierarchy namely the one
involving the 2-point and 3-point distributions is not consistent with product
measure ansatz.

Firstly, we recall that we can derive an expression for the single point
distribution P(m) in the steady state by assuming product measure in the
equation involving the single point and two point distributions (namely
Eq. (7)). The Laplace transform Q(s)= pV( pV+q)�(1& pqV&q2) is given
by Eq. (8) where Q(s)=d(sV )�ds. Next we write down the second equation
of the hierarchy, namely k the evolution equation of the joint mass dis-
tribution, P(m i , mi+1) of two adjacent sites i and (i+1),

P(mi , mi+1 , t+1)=| dmi&1 | dri&1 f (ri&1) | dm$i | dri f (ri )

_| dm$i+1 | dri+1 f (ri+1)

_P(mi&1 , mi , mi+1 , t) $(m i&1 ri&1+m$i (1&ri )&mi )

_$(m$i ri+m$i+1(1&ri+1)&m i+1) (33)

All the integrals over dm run from 0 to � while the integrals over dr run
from 0 to 1. P(mi&1 , mi , m i+1 , t) is the three point joint mass distribution
function and f (r) is given by Eq. (6). If the product measure were exact, the
joint distributions in the above equation would factorize and the resulting
equation must be satisfied by the P(m) obtained from the first equation of
the hierarchy, namely Eq. (8).

Assuming factorization P(m1 , m2 ,...)=>i P(mi ) in Eq. (33), multiplying
both sides by e&mi s1&mi+1s2 and then integrating over mi and mi+1 , we get

Q(s1) Q(s2)=(q+ pV(s1))(qQ(s2)+ pV(s2))

_\qQ(s1)+ p |
1

0
dri Q(s1+(s2&s2) r i )+ (34)
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If product measure were to be true, this equation must be satisfied with the
expression of Q(s) obtained from Eq. (8). If we substitute the expression for
Q(s) from Eq. (8) in the above equation, we find after a somewhat tedious
but straightforward algebra, that Eq. (34) reduces to,

\V(s2)
V(s1)+

2& p

&(2& p)
V(s2)
V(s1)

+1& p=0 (35)

If product measure is to be true then a necessary condition (but not suffi-
cient) is that the above equation be satisfied for arbitrary values of s1 and s2 .
For p<1, this is an algebraic equation for the ratio V(s2)�V(s1). Sine the
coefficients do not involve s1 or s2 , the solution for V(s2)�V(s1) will be a
constant independent of s1 and s2 . Clearly this can not be true for arbitrary
values of s1 and s2 . Thus product ansatz is not exact for p<1 for asym-
metric dynamics.

Note however that for p=1, Eq. (35) becomes an identity. This
however is a necessary but not sufficient condition to prove that product
measure is exact for p=1. However it was shown(15) that for p=1, all
equations of the hierarchy of distribution functions are actually consistent
with product measure ansatz.

APPENDIX B. PROOF OF EXACTNESS OF PRODUCT
ANSATZ FOR p � 0 FOR THE
SYMMETRIC MODEL

In this appendix we show that the mean field is exact for the p � 0
limit of the symmetric continuous model. Consider a cluster of n con-
secutive sites 1, 2,..., n. In the steady state, the joint probability distribution
function P(m1 , m2 ,..., mn) satisfies the equation,

0=&(2n+2) P(m1 ,..., mn)

+|
�

0
dm0 |

1

0
dr |

�

0
dm$1 P(m0 ,..., mn)($(m$1+m0r&m1)

+$(m$1(1&r)&m1))

+|
�

0
dmn+1 |

1

0
dr |

�

0
dm$nP(m1 ,..., mn+1)($(m$n+mn+1 r&mn)

+$(m$n(1&r)&mn))
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+ :
n&1

i=1
|

�

0
dm$i |

1

0
dr |

�

0
dm$i+1P(m1 ,..., mn)

_($(m$i (1&r)&mi ) $(m$i+1+m$ir&mi+1)

+$(m$i+m$i+1r&mi ) $(m$i+1(1&r)&m i+1)) (36)

The first term is the total rate of going out of the state. The second and
third terms describe the mass transfer at the boundary of the n-cluster
while the last term accounts for mass transfer within the cluster. Let
P(m1 ,..., mn)=>n

1 P(m i ). We multiply both sides of the equation by
e&m1s1& } } } &mnsn and sum over m1 ,..., mn . The resulting terms in the right
hand side can be simplified by using the explicit expression of V(s) from
Eq. (10). Then each one of the terms involving the integrals reduces to
2 >n

1 Q(si ), where Q(s)=��
0 P(m) e&ms dm as before. Thus Eq. (36) is

indeed satisfied by the product measure ansatz for all n. Joint probability
distributions for any n arbitrary sites can be split up into product of dis-
tributions for clusters of neighbouring sites, and then the proof can be
applied for each of the individual clusters.

We note that for the p � 0 limit of the symmetric model, it was shown
in ref. 16 by a different method that the product measure is exact for any
finite system of size N.

For symmetric model with p>0, the product measure is not exact as
was shown in the text by explicit calculation of two point mass correlation
function.
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